Photo-assisted gene delivery using light-responsive catanionic vesicles.

نویسندگان

  • Yu-Chuan Liu
  • Anne-Laure M Le Ny
  • Judith Schmidt
  • Yeshayahu Talmon
  • Bradley F Chmelka
  • C Ted Lee
چکیده

Photoresponsive catanionic vesicles have been developed as a novel gene delivery vector combining enhanced cellular uptake with phototriggered release of vesicle payload following entry into cells. Vesicles with diameters ranging from 50 to 200 nm [measured using cryo-transmission electron microscopy (TEM) and light-scattering techniques] form spontaneously, following mixing of positively charged azobenzene-containing surfactant and negatively charged alkyl surfactant species. Fluorescent probe measurements showed that the catanionic vesicles at a cation/anion ratio of 7:3 formed at surfactant concentrations as low as 10 microM of the azobenzene surfactant under visible light (with the azobenzene surfactant species principally in the trans configuration), while 50-60 microM of the azobenzene surfactant is required to form vesicles under UV illumination (with the azobenzene surfactant species principally in the cis configuration). At intermediate surfactant concentrations (ca. 15-45 microM) under visible light conditions, transport of DNA-vesicle complexes occurred past the cell membrane of murine fibroblast NIH 3T3 cells through endocytosis. Subsequent UV illumination induced rupture of the vesicles and release of uncomplexed DNA into the cell interiors, where it was capable of passing through the nuclear membrane and thereby contributing to enhanced expression. Single-molecule fluorescent images of T4-DNA demonstrated that the formation of vesicles with a net positive charge led to compaction of DNA molecules via complex formation within a few seconds, while UV-induced disruption of the vesicle-DNA complexes led to DNA re-expansion to the elongated-coil state, also within a few seconds. Transfection experiments with eGFP DNA revealed that photoresponsive catanionic vesicles are more effectively taken up by cells compared to otherwise identical alkyl (i.e., nonazobenzene-containing and thus nonlight-responsive) catanionic vesicles, presumably because of pi-pi stacking interactions that enhance bilayer rigidity in the photoresponsive vesicles. Subsequent UV illumination following endocytosis leads to further dramatic enhancements in the transfection efficiencies, demonstrating that vector unpacking and release of DNA from the carrier complex can be the limiting step in the overall process of gene delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System

The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were ca...

متن کامل

Influence of chain length of alcohols on Stokes' shift dynamics in catanionic vesicles.

In this paper, we explore the effects of the chain length of simple monohydroxy alcohol (C(n)OH, 2 ≤ n ≤ 8) and benzyl alcohol (C(6)H(5)CH(2)OH) upon the fluorescence dynamics of a dipolar solute probe, coumarin 153 (C153), in vesicles formed in aqueous solutions of two oppositely charged (cationic and anionic) surfactants in the presence of 0.05 mol kg(-1) alcohol. The catanionic vesicles are ...

متن کامل

Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery.

We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can asse...

متن کامل

Interaction between GUVs and catanionic nanocontainers: new insight into spontaneous membrane fusion.

Spontaneous receptor-free membrane fusion with pure lipid systems, used as a cell membrane model, is demonstrated with easy-to-handle lactose-derived catanionic vesicles. This fusion, mediated and controlled by phospholipids, emphasizes the great value of these nanovesicles for enhanced direct cytosolic drug delivery without the shortcomings linked with endocytic pathways.

متن کامل

Delivery of RNA and Its Intracellular Translation into Protein Mediated by SDS-CTAB Vesicles: Potential Use in Nanobiotechnology

Catanionic vesicles are supramolecular aggregates spontaneously forming in water by electrostatic attraction between two surfactants mixed in nonstoichiometric ratios. The outer surface charges allow adsorption to the biomembrane by electrostatic interactions. The lipoplex thus obtained penetrates the cell by endocytosis or membrane fusion. We examined the possible cytotoxic effects and evaluat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 25 10  شماره 

صفحات  -

تاریخ انتشار 2009